Crossref Cited-by Linking logo

Collect. Czech. Chem. Commun. 1976, 41, 1492-1499
https://doi.org/10.1135/cccc19761492

Antipodal and vicinal shift effects in 11B, 13C, and 1H NMR spectra of substituted dicarba-closo-dodecarboranes(12)

S. Heřmánek, V. Gregor, B. Štíbr, J. Plešek, Z. Janoušek and V. A. Antonovich

Crossref Cited-by Linking

  • Sivaev Igor B., Anufriev Sergey A., Shmal’ko Akim V.: Electron-withdrawing effect and CH-acidity of carboranes: effect of nature and position of substituents. Phosphorus, Sulfur, and Silicon and the Related Elements 2024, 199, 299. <https://doi.org/10.1080/10426507.2024.2335982>
  • Poater Jordi, Escayola Sílvia, Poater Albert, Teixidor Francesc, Ottosson Henrik, Viñas Clara, Solà Miquel: Single─Not Double─3D-Aromaticity in an Oxidized Closo Icosahedral Dodecaiodo-Dodecaborate Cluster. J. Am. Chem. Soc. 2023, 145, 22527. <https://doi.org/10.1021/jacs.3c07335>
  • Shernyukov Andrey V., Salnikov George E., Rudakov Dmitry A., Genaev Alexander M.: Noncatalytic Bromination of Icosahedral Dicarboranes: The Key Role of Anionic Bromine Clusters Facilitating Br Atom Insertion into the B–H σ-Bond. Inorg. Chem. 2021, 60, 3106. <https://doi.org/10.1021/acs.inorgchem.0c03392>
  • Štíbr Bohumil: Alpha shift correlation (ASC) method. Sensitivity of 11B NMR shifts to halogen substitution in the ten-vertex nido and arachno series of boron clusters. Linear behavior of NMR effects. Inorganica Chimica Acta 2018, 471, 615. <https://doi.org/10.1016/j.ica.2017.11.040>
  • Štíbr Bohumil, Tok Oleg L., Holub Josef: Quantitative Assessment of Substitution NMR Effects in the Model Series of o-Carborane Derivatives: α-Shift Correlation Method. Inorg. Chem. 2017, 56, 8334. <https://doi.org/10.1021/acs.inorgchem.7b01023>
  • Štíbr B.: 11B-NMR shielding effects in the closo borane series: sensitivity of shifts and their additivity. New J. Chem. 2017, 41, 14452. <https://doi.org/10.1039/C7NJ02689G>
  • Lupu Marius, Zaulet Adnana, Teixidor Francesc, Sillanpää Reijo, Viñas Clara: Poly-iodinated closo 1,2-C 2 B 10 and nido [7,8-C 2 B 9 ] − carborane frameworks: Synthesis and consequences. Journal of Organometallic Chemistry 2015, 798, 171. <https://doi.org/10.1016/j.jorganchem.2015.05.053>
  • Hnyk Drahomír, Jayasree Elambalassery G.: Cationic closo‐carboranes 2. Do computed 11B and 13C NMR chemical shifts support their experimental availability?. J Comput Chem 2013, 34, 656. <https://doi.org/10.1002/jcc.23176>
  • Puga Alberto V., Teixidor Francesc, Sillanpää Reijo, Kivekäs Raikko, Arca Massimiliano, Barberà Gemma, Viñas Clara: From Mono‐ to Poly‐Substituted Frameworks: A Way of Tuning the Acidic Character of CcH in o‐Carborane Derivatives. Chemistry A European J 2009, 15, 9755. <https://doi.org/10.1002/chem.200900925>
  • Ringstrand Bryan, Bateman Devon, Shoemaker Richard K., Janoušek Zbyněk: Improved synthesis of [closo-1-CB9H10]– anion and new C-substituted derivatives. Collect. Czech. Chem. Commun. 2009, 74, 419. <https://doi.org/10.1135/cccc2008151>
  • Núñez Rosario, Tutusaus Oscar, Teixidor Francesc, Viñas Clara, Sillanpää Reijo, Kivekäs Raikko: Highly Stable Neutral and Positively Charged Dicarbollide Sandwich Complexes. Chemistry A European J 2005, 11, 5637. <https://doi.org/10.1002/chem.200500288>
  • Rojo Isabel, Teixidor Francesc, Viñas Clara, Kivekäs Raikko, Sillanpää Reijo: Relevance of the Electronegativity of Boron in η5‐Coordinating Ligands: Regioselective Monoalkylation and Monoarylation in Cobaltabisdicarbollide [3,3′‐Co(1,2‐C2B9H11)2]− Clusters. Chemistry A European J 2003, 9, 4311. <https://doi.org/10.1002/chem.200304970>
  • Janoušek Zbyněk, Hilton Cameron L., Schreiber Peter J., Michl Josef: C-Halogenation of the closo-[CB11H12]- Anion. Collect. Czech. Chem. Commun. 2002, 67, 1025. <https://doi.org/10.1135/cccc20021025>
  • Viñas Clara, Barberà Gemma, Oliva Josep M., Teixidor Francesc, Welch Alan J., Rosair Georgina M.: Are Halocarboranes Suitable for Substitution Reactions? The Case for 3-I-1,2-closo-C2B10H11:  Molecular Orbital Calculations, Aryldehalogenation Reactions, 11B NMR Interpretation of closo-Carboranes, and Molecular Structures of 1-Ph-3-Br-1,2-closo-C2B10H10 and 3-Ph-1,2-closo-C2B10H11. Inorg. Chem. 2001, 40, 6555. <https://doi.org/10.1021/ic010493o>
  • Oliva J.M., Viñas C.: Electronic structure and assignment of experimental 11 B nuclei NMR signals in the ortho -carborane 1,2-(SH) 2 -1,2-C 2 B 10 H 10 by ab initio calculations. Journal of Molecular Structure 2000, 556, 33. <https://doi.org/10.1016/S0022-2860(00)00646-3>
  • McKee Michael L., Wang Zhi-Xiang, Schleyer Paul von Ragué: Ab Initio Study of the Hypercloso Boron Hydrides BnHn and BnHn-. Exceptional Stability of Neutral B13H13. J. Am. Chem. Soc. 2000, 122, 4781. <https://doi.org/10.1021/ja994490a>
  • Heřmánek S: NMR as a tool for elucidation of structures and estimation of electron distribution in boranes and their derivatives. Inorganica Chimica Acta 1999, 289, 20. <https://doi.org/10.1016/S0020-1693(99)00055-9>
  • Deck Kathryn J., Brenton Paula, Fehlner Thomas P.: Substitution on Metallaboranes at Boron. Syntheses of closo-1-X-[2,3,4-(η5-C5Me5)3(μ-H)2Co3B2H], X = Cl and OH, and closo-1,5-Cl2-[2,3,4-(η5-C5Me5)3(μ-H)2Co3B2] from closo-[2,3,4-(η5-C5Me5)3(μ-H)2Co3B2H2]. Inorg. Chem. 1997, 36, 554. <https://doi.org/10.1021/ic961184e>
  • McKee Michael L.: Computed Properties of the CB9H10 and CB11H12 Free Radicals. J. Am. Chem. Soc. 1997, 119, 4220. <https://doi.org/10.1021/ja964328x>
  • Shaw Kenneth F., Reid Bruce D., Welch Alan J.: Synthesis and characterisation of metal complexes of ether carbaboranes. Molecular structures of d6 ML3, d8 ML2 and d10 ML complexes of mono- and di-ether C2B9 carbaborane ligands, showing the progressive importance of secondary M…O bonding. Journal of Organometallic Chemistry 1994, 482, 207. <https://doi.org/10.1016/0022-328X(94)88203-7>
  • Faridoon Faridoon, McGrath Marguerite, Spalding Trevor R., Fontaine Xavier L. R., Kennedy John D., Thornton-Pett Mark: Metallaheteroborane chemistry. Part 6. Synthesis of closo-[2-(η-ligand)-1,2-TeMB10H10] complexes with M(η-ligand)= Rh(η5-C5Me5)(1), Ru(η6-p- MeC6H4Pri)(2), Ru(η6-C6Me6)(3), and of nido-[6-(η6-C6Me6)-8-(OEt)-6-RuB9H12](4), their characterisation by nuclear magnetic resonance spectroscopy and, for (1) and (3), by X-ray crystallography. J. Chem. Soc., Dalton Trans. 1990, 1819. <https://doi.org/10.1039/DT9900001819>
  • Jelinek Tomáš, Heřmánek Stanislav, Štibr Bohumil, Plešek Jaromir: Substitution of arachno-4,6-c2b7h13 carborane. Polyhedron 1986, 5, 1303. <https://doi.org/10.1016/S0277-5387(00)83476-2>
  • Heřmánek S., Fusek J., Štíbr B., Plešek J., Jelínek T.: Elucidation of structures of nido-y-CB8H12 and B9H−12 by two-dimensional 11B-11B NMR spectroscopy. Polyhedron 1986, 5, 1873. <https://doi.org/10.1016/S0277-5387(00)84871-8>
  • Onak Thomas, Jarvis Wiley: Antipodal hydrogen-hydrogen coupling in small cage carbon-boron compounds. Journal of Magnetic Resonance (1969) 1979, 33, 649. <https://doi.org/10.1016/0022-2364(79)90175-6>
  • Plešek J, Heřmánek S, Štíbr B: Electron transfer phenomena in isolated icosahedral borane units. Journal of the Less Common Metals 1979, 67, 225. <https://doi.org/10.1016/0022-5088(79)90096-1>
  • Todd Lee J., Siedle Allen R.: NMR studies of boranes, carboranes and hetero-atom boranes. Progress in Nuclear Magnetic Resonance Spectroscopy 1979, 13, 87. <https://doi.org/10.1016/0079-6565(79)80001-1>
  • Wrackmeyer Bernd: Carbon-13 NMR spectroscopy of boron compounds. Progress in Nuclear Magnetic Resonance Spectroscopy 1979, 12, 227. <https://doi.org/10.1016/0079-6565(79)80003-5>
  • HERMANEK S., GREGOR V., STIBR B., PLESEK J., JANOUSEK Z., ANTONOVICH V. A.: ChemInform Abstract: ANTIPODAL AND VICINAL SHIFT EFFECTS IN BORON‐11, CARBON‐13 AND PROTON NMR SPECTRA OF SUBSTITUTED DICARBA‐CLOSO‐DODECABORANES. Chemischer Informationsdienst 1976, 7. <https://doi.org/10.1002/chin.197632038>