Collect. Czech. Chem. Commun.
2005, 70, 1-10
https://doi.org/10.1135/cccc20050001
The Influence of Self-Stresses on the Deuterium Diffusion in Pd77Ag23 Membrane
Danuta Dudek
Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
References
1. Z. Phys. Chem. (Frankfurt am Main) 1963, 36, 383.
< A.: https://doi.org/10.1524/zpch.1963.36.5_6.383>
2. Z. Phys. Chem. (Frankfurt am Main) 1965, 44, 143.
< H., Poeschel E.: https://doi.org/10.1524/zpch.1965.44.3_4.143>
3. Z. Naturforsch., A 1966, 21, 515.
A.:
4. Z. Phys. Chem. (Frankfurt am Main) 1967, 56, 133.
< G., Wicke E.: https://doi.org/10.1524/zpch.1967.56.3_4.133>
5. Trans. Faraday Soc. 1967, 63, 1453.
< A. W., Lewis F. A.: https://doi.org/10.1039/tf9676301453>
6. J. Phys. Chem. 1970, 74, 503.
< G. L.: https://doi.org/10.1021/j100698a005>
7. Z. Naturforsch., A 1970, 25, 1490.
H.:
8. Ber. Bunsen-Ges. Phys. Chem. 1976, 80, 446.
< H., Sicking G., Wicke E.: https://doi.org/10.1002/bbpc.19760800511>
9. J. Less-Common Met. 1982, 88, 387.
< Y., Hirata S., Nishikawa H.: https://doi.org/10.1016/0022-5088(82)90247-8>
10. J. Less-Common Met. 1991, 172–174, 748.
< R. V., Ersson N. O., Tong X. Q.: https://doi.org/10.1016/0022-5088(91)90199-E>
11. J. Less-Common Met. 1991, 172–174, 816.
< H., Rauf T.: https://doi.org/10.1016/0022-5088(91)90208-L>
12. Int. J. Thermophys. 1997, 18, 1051.
< W. T., Jr.: https://doi.org/10.1007/BF02575248>
13. Metall. Mater. Trans. A 1998, 29, 1023.
< E., Kemali M., Perujo A., Ross D. K.: https://doi.org/10.1007/s11661-998-1011-3>
14. J. Alloys Compd. 2002, 330–332, 448.
< H., Barlag H., Majer G.: https://doi.org/10.1016/S0925-8388(01)01456-6>
15. Z. Phys. Chem. (Frankfurt am Main) 1967, 56, 155.
< G., Wicke E.: https://doi.org/10.1524/zpch.1967.56.3_4.155>
16. J. Less-Common Met. 1969, 19, 369.
< R. G.: https://doi.org/10.1016/0022-5088(69)90182-9>
17. J. Less-Common Met. 1987, 130, 387.
< R., Powell G. L.: https://doi.org/10.1016/0022-5088(87)90133-0>
18. Ber. Bunsen-Ges. Phys. Chem. 1974, 78, 58.
W., Grabke H. J.:
19. J. Alloys Compd. 1997, 253–254, 378.
< L., Klein B., Zuechner H.: https://doi.org/10.1016/S0925-8388(96)02970-2>
20. J. Alloys Compd. 2002, 330–332, 332.
< O. M., Olsen R. A.: https://doi.org/10.1016/S0925-8388(01)01491-8>
21. Phys. Rev. B 2002, 66, 184304.
< X., Kramer G. J.: https://doi.org/10.1103/PhysRevB.66.184304>
22. Baranowski B. in: Advances in Thermodynamics, Flow Diffusion and Rate Processes (S. Sieniutycz and P. Salomon, Eds), p.168. Taylor and Francis, New York 1992.
23. J. Less-Common Met. 1989, 154, 329.
< B.: https://doi.org/10.1016/0022-5088(89)90218-X>
24. Defect Diffusion Forum 1994, 115–116, 39.
< F. A., Sakamoto Y., Kandasamy K., Tong X. Q.: https://doi.org/10.4028/www.scientific.net/DDF.115-116.39>
25. Int. J. Hydrogen Energy 1997, 22, 141.
< X. Q., Sakamoto Y., Lewis F. A., Bucur R. V., Kandasamy K.: https://doi.org/10.1016/S0360-3199(96)00162-0>
26. Int. J. Hydrogen Energy 1992, 17, 965.
< Y., Tanaka H., Lewis F. A., Tong X. Q.: https://doi.org/10.1016/0360-3199(92)90059-6>
27. Nature 1983, 306, 613.
F. A., Magennis J. P., Mc Kee S. G., Seebuwufu P. J. M.:
28. J. Less-Common Met. 1987, 134, L27.
< F. A., Baranowski B., Kandasamy K.: https://doi.org/10.1016/0022-5088(87)90571-6>
29. Ber. Bunsen-Ges. Phys. Chem. 1989, 93, 1225.
< B., Lewis F. A.: https://doi.org/10.1002/bbpc.19890931115>
30. Z. Phys. Chem. 1991, 171, 213.
< K., Lewis F. A., Magennis J. P., Mc Kee S. G., Tong X. Q.: https://doi.org/10.1524/zpch.1991.171.Part_2.213>
31. J. Phys.: Condens. Matter. 1992, 4, L439.
< K., Tong X. Q., Lewis F. A.: https://doi.org/10.1088/0953-8984/4/34/001>
32. Thermochim. Acta 1993, 218, 57.
< F. A., Tong X. Q., Kandasamy K., Bucur R. V., Sakamoto Y.: https://doi.org/10.1016/0040-6031(93)80411-3>
33. Pol. J. Chem. 1995, 69, 1196.
D., Baranowski B.:
34. Z. Phys. Chem. 1998, 206, 21.
< D., Baranowski B.: https://doi.org/10.1524/zpch.1998.206.Part_1_2.021>
35. J. Alloys Compd. 2001, 329, 1.
< D.: https://doi.org/10.1016/S0925-8388(01)01264-6>
36. Defect Diffusion Forum 2002, 203–205, 225.
< D.: https://doi.org/10.4028/www.scientific.net/DDF.203-205.225>
37. J. Less-Common Met. 1991, 169, 157.
< X. Q., Lewis F. A.: https://doi.org/10.1016/0022-5088(91)90244-X>
38. Int. J. Hydrogen Energy 1995, 20, 35.
< Y., Tanaka H., Sakamoto F., Lewis F. A.: https://doi.org/10.1016/0360-3199(93)E0010-I>
39. Collect. Czech. Chem. Commun. 2003, 68, 1046.
< D.: https://doi.org/10.1135/cccc20031046>
40. Acta Metall. 1973, 21, 1051.
< F. C., Cahn J. W.: https://doi.org/10.1016/0001-6160(73)90021-7>
41. Metall. Trans. A 1978, 9, 1953.
J. C. M.:
42. Acta Metall. 1982, 30, 1835.
< F. C., Cahn J. W.: https://doi.org/10.1016/0001-6160(82)90023-2>
43. Acta Metall. 1985, 33, 331.
< F. C., Cahn J. W.: https://doi.org/10.1016/0001-6160(85)90077-X>
44. Int. J. Hydrogen Energy 1995, 20, 455.
< K.: https://doi.org/10.1016/0360-3199(94)00074-A>
45. J. Electroanal. Chem. 2001, 501, 89.
< P.: https://doi.org/10.1016/S0022-0728(00)00507-6>
46. J. Phys. Chem. B 2002, 106, 4933.
< B., Zoltowski P.: https://doi.org/10.1021/jp013946j>
47. Crank J.: The Mathematics of Diffusion, p. 48. Oxford University Press, Oxford 1956.
48. Barrer R. M.: Diffusion in and through Solids, p. 19. Cambridge University Press, Cambridge 1951.