Collect. Czech. Chem. Commun. 2006, 71, 1588-1610
https://doi.org/10.1135/cccc20061588

A Kinetic Study of the Cytochrome c-Hydrogen Peroxide Reaction

Joaquin F. Perez-Benito

Departamento de Quimica Fisica, Facultad de Quimica, Universidad de Barcelona, Marti i Franques, 1, 08028 Barcelona, Spain

References

1. Sohal R. S., Weindruch R.: Science 1996, 273, 59. <https://doi.org/10.1126/science.273.5271.59>
2. Al-Ajlouni A. M., Espenson J. H., Bakac A.: Inorg. Chem. 1993, 32, 3162. <https://doi.org/10.1021/ic00066a030>
3. Meggers E., Holland P. L., Tolman W. B., Romesberg F. E., Schultz P. G.: J. Am. Chem. Soc. 2000, 122, 10714. <https://doi.org/10.1021/ja0025806>
4. Toyokuni S.: Free Radical Biol. Med. 1996, 20, 553. <https://doi.org/10.1016/0891-5849(95)02111-6>
5. Walling C., Partch R. E., Weil T.: Proc. Natl. Acad. Sci. U.S.A. 1975, 72, 140. <https://doi.org/10.1073/pnas.72.1.140>
6. Goldstein S., Meyerstein D.: Acc. Chem. Res. 1999, 32, 547. <https://doi.org/10.1021/ar9800789>
7. Sawyer D. T., Sobkowiak A., Matsushita T.: Acc. Chem. Res. 1996, 29, 409. <https://doi.org/10.1021/ar950031c>
8. Rachmilovich-Calis S., Masarwa A., Meyerstein N., Meyerstein D.: Eur. J. Inorg. Chem. 2005, 2875. <https://doi.org/10.1002/ejic.200500097>
9. Perez-Benito J. F.: J. Phys. Chem. A 2004, 108, 4853. <https://doi.org/10.1021/jp031339l>
10. Iwase H., Takatori T., Aono K., Iwadate K., Takahashi M., Nakajima M., Nagao M.: Biochem. Biophys. Res. Commun. 1995, 216, 483. <https://doi.org/10.1006/bbrc.1995.2648>
11. Kajiwara K., Ikeda K., Kuroi R., Hashimoto R., Tokumaru S., Kojo S.: Cell. Mol. Life Sci. 2001, 58, 485. <https://doi.org/10.1007/PL00000872>
12. Lenaz G., Cavazzoni M., Genova M. L., D’Aurelio M., Pich M. M., Pallotti F., Formiggini G., Marchetti M., Castelli G. P., Bovina C.: BioFactors 1998, 8, 195. <https://doi.org/10.1002/biof.5520080305>
13. Kownatzki E., Uhrich S., Bethke P.: Agents Actions 1991, 34, 393. <https://doi.org/10.1007/BF01988734>
14. Chung N., Shah M. M., Grover T. A., Aust S. D.: Arch. Biochem. Biophys. 1993, 306, 70. <https://doi.org/10.1006/abbi.1993.1482>
15. Villegas J. A., Mauk A. G., Vazquez-Duhalt R.: Chem. Biol. 2000, 7, 237. <https://doi.org/10.1016/S1074-5521(00)00098-3>
16. Turrens J. F., McCord J. M.: FEBS Lett. 1988, 227, 43. <https://doi.org/10.1016/0014-5793(88)81410-8>
17. Gourion-Arsiquaud S., Chevance S., Bouyer P., Garnier L., Montillet J. L., Bondon A., Berthornieu C.: Biochemistry 2005, 44, 8652. <https://doi.org/10.1021/bi050322l>
18. Kagan V. E., Borisenko G. G., Tyurina Y. Y., Tyurin V. A., Jiang J., Potapovich A. I., Kini V., Amoscato A. A., Fujii Y.: Free Radical Biol. Med. 2004, 37, 1963. <https://doi.org/10.1016/j.freeradbiomed.2004.08.016>
19. Margoliash E., Frohwirt N.: Biochem. J. 1959, 71, 570. <https://doi.org/10.1042/bj0710570>
20. Greenwood C., Wilson M. T.: Eur. J. Biochem. 1971, 22, 5. <https://doi.org/10.1111/j.1432-1033.1971.tb01507.x>
21. Wilson M. T., Greenwood C.: Eur. J. Biochem. 1971, 22, 11. <https://doi.org/10.1111/j.1432-1033.1971.tb01508.x>
22. Mathews A. J., Brittain T.: Biochem. J. 1987, 243, 379. <https://doi.org/10.1042/bj2430379>
23. Perez-Benito J. F., Arias C.: J. Colloid Interface Sci. 1992, 152, 70. <https://doi.org/10.1016/0021-9797(92)90009-B>
24. Barrow G. M.: Physical Chemistry, p. 803. McGraw–Hill, New York 1966.
25. Perez-Benito J. F.: J. Inorg. Biochem. 2004, 98, 430. <https://doi.org/10.1016/j.jinorgbio.2003.10.025>
26. Itoh M., Nakamura M., Suzuki T., Kawai K., Horitsu H., Takamizawa K.: J. Biochem. 1995, 117, 780. <https://doi.org/10.1093/oxfordjournals.jbchem.a124776>
27. Sawyer D. T., Valentine J. S.: Acc. Chem. Res. 1981, 14, 393. <https://doi.org/10.1021/ar00072a005>
28. Konishi T., Matsugo S.: Biochim. Biophys. Acta 1988, 967, 267. <https://doi.org/10.1016/0304-4165(88)90019-0>
29. Brandt K. G., Parks P. C., Czerlinski G. H., Hess G. P.: J. Biol. Chem. 1966, 241, 4180.
30. Perez-Benito J. F., Arias C., Brillas E.: Gazz. Chim. Ital. 1991, 121, 139.
31. Di Paolo M. L., Scarpa M., Rigo A.: J. Biochem. Biophys. Methods 1994, 28, 205. <https://doi.org/10.1016/0165-022X(94)90017-5>
32. Xu F., Hultquist E. D.: Biochem. Biophys. Res. Commun. 1991, 181, 197.
33. Bakac A.: Prog. Inorg. Chem. 1995, 43, 267. <https://doi.org/10.1002/9780470166444.ch3>
34. Van Leeuwen J. W., Raap A., Koppenol W. H., Nauta H.: Biochim. Biophys. Acta 1978, 503, 1. <https://doi.org/10.1016/0005-2728(78)90157-3>
35. Koppenol W. H., Van Buuren K. J. H., Butler J., Braams R.: Biochim. Biophys. Acta 1976, 449, 157. <https://doi.org/10.1016/0005-2728(76)90130-4>
36. Butler J., Koppenol W. H., Margoliash E.: J. Biol. Chem. 1982, 257, 10747.
37. Butler J., Hoey B. M.: Biochim. Biophys. Acta 1993, 1161, 73. <https://doi.org/10.1016/0167-4838(93)90198-Z>
38. Mitsuta K., Hiramatsu M., Ohya-Nishiguchi H., Kamada H., Fujii K.: Bull. Chem. Soc. Jpn. 1994, 67, 529. <https://doi.org/10.1246/bcsj.67.529>
39. Koppenol W. H., Margoliash E.: J. Biol. Chem. 1982, 257, 4426.
40. Gopal D., Wilson G. S., Earl R. A., Cusanovich M. A.: J. Biol. Chem. 1988, 263, 11652.
41. Sivakolundu S. G., Mabrouk P. A.: J. Biol. Inorg. Chem. 2003, 8, 527. <https://doi.org/10.1007/s00775-002-0437-0>
42. Koppenol W. H., Butler J.: Isr. J. Chem. 1984, 24, 11. <https://doi.org/10.1002/ijch.198400002>
43. Koppenol W. H.: Free Radical Biol. Med. 1985, 1, 281. <https://doi.org/10.1016/0748-5514(85)90132-1>
44. Nilsson K.: Isr. J. Chem. 1972, 10, 1011. <https://doi.org/10.1002/ijch.197200111>
45. Coetzee J. F., Ritchie C. D.: Solute–Solvent Interactions, p. 20. Dekker, New York 1969.
46. Harrington J. P., Carrier T. L.: Int. J. Biochem. 1985, 17, 119. <https://doi.org/10.1016/0020-711X(85)90095-3>
47. Margalit R., Schejter A.: Eur. J. Biochem. 1973, 32 , 492. <https://doi.org/10.1111/j.1432-1033.1973.tb02633.x>
48. Matsugo S., Kayamori-Sato N., Konishi T.: Photochem. Photobiol. 1994, 60, 415. <https://doi.org/10.1111/j.1751-1097.1994.tb05126.x>
49. Taher M. M., Lakshmaiah N.: J. Inorg. Biochem. 1987, 31, 133. <https://doi.org/10.1016/0162-0134(87)80058-2>
50. Perez-Benito J. F.: Monatsh. Chem. 2001, 132, 1477. <https://doi.org/10.1007/s007060170004>
51. Prutz W. A., Kissner R., Nauser T., Koppenol W. H.: Arch. Biochem. Biophys. 2001, 389, 110. <https://doi.org/10.1006/abbi.2001.2321>
52. Ogata Y., Tanaka K.: Can. J. Chem. 1982, 60, 848. <https://doi.org/10.1139/v82-128>
53. Lojou E., Luciano P., Nitsche S., Bianco P.: Electrochim. Acta 1999, 44, 3341. <https://doi.org/10.1016/S0013-4686(99)00053-5>
54. Bard A. J.: Encyclopedia of Electrochemistry of the Elements, Vol. IX, Part B, p. 263. Marcel Dekker, New York 1986.
55. Perez-Benito J. F., Arias C.: New J. Chem. 1999, 23, 945. <https://doi.org/10.1039/a903797g>
56. Weast R. C.: Handbook of Chemistry and Physics, p. D-141. CRC Press, Cleveland 1977.
57. Perez-Benito J. F., Arias C.: J. Phys. Chem. A 1997, 101, 4726. <https://doi.org/10.1021/jp963868d>
58. Geisthardt D., Kruppa J.: Anal. Biochem. 1987, 160, 184. <https://doi.org/10.1016/0003-2697(87)90629-4>
59. Elliot A. J., McCracken D. R., Buxton G. V., Wood N. D.: J. Chem. Soc., Faraday Trans. 1990, 86, 1539. <https://doi.org/10.1039/ft9908601539>
60. Zhao M. J., Jung L., Tanielian C., Mechin R.: Free Radical Res. 1994, 20, 345. <https://doi.org/10.3109/10715769409145635>
61. Motohashi N., Saito Y.: Chem. Pharm. Bull. 1993, 41, 1842. <https://doi.org/10.1248/cpb.41.1842>
62. Buxton G. V., Greenstock C. L., Helman W. P., Ross A. B.: J. Phys. Chem. Ref. Data 1988, 17, 513. <https://doi.org/10.1063/1.555805>
63. Rusvai E., Vegh M., Kramer M., Horvath I.: Biochem. Pharmacol. 1988, 37, 4574. <https://doi.org/10.1016/0006-2952(88)90675-2>
64. Li B., Gutierrez P. L., Blough N. V.: Anal. Chem. 1997, 69, 4295. <https://doi.org/10.1021/ac970622b>