Collect. Czech. Chem. Commun. 2007, 72, 64-82
https://doi.org/10.1135/cccc20070064

The Nuclear Quadrupole Moment of 14N from Accurate Electric Field Gradient Calculations and Microwave Spectra of NP Molecule

Vladimir Kellöa,* and Andrzej J. Sadlejb

a Department of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University, Mlynská dolina, SK-842 15 Bratislava, Slovakia
b Department of Quantum Chemistry, Institute of Chemistry, Nicolaus Copernicus University, PL-87 100 Torun, Poland

References

1. Freeman A. J., Frankel R. B. (Eds): Hyperfine Interactions. Academic Press, New York 1967.
2. Kopfermann H.: Nuclear Moments. Academic Press, New York 1958.
3. Gordy W., Cook R.: Microwave Molecular Spectra. Wiley, New York 1970.
4. Arimondo E., Ignuscio M., Violino P.: Rev. Mod. Phys. 1977, 49, 31. <https://doi.org/10.1103/RevModPhys.49.31>
5. Semin G. K., Babushkina T. A., Yakobson G. G.: Nuclear Quadrupole Resonance in Chemistry. Wiley, New York 1975.
6. Shirley D. A.: Rev. Mod. Phys. 1964, 36, 339. <https://doi.org/10.1103/RevModPhys.36.339>
7. Lindgren I., Rosén A.: Case Stud. At. Phys. 1974, 4, 150.
8. Bieroń J., Pyykkö P., Sundholm D., Kellö V., Sadlej A. J.: Phys. Rev. A 2001, 64, 052507. <https://doi.org/10.1103/PhysRevA.64.052507>
9. Das T. P., Hahn E. L.: Solid State Phys., Adv. Res. Appl., Suppl. 1958, 1, 1.
10. Sundholm D., Olsen J., Malmqvist P.-Å., Roos B. O. in: Numerical Determination of the Electronic Structure of Atoms, Diatomic and Polyatomic Molecules (M. Defranceschi and J. Delhalle, Eds), p. 329. Kluwer, Dordrecht 1989.
11. Tokman M., Sundholm D., Pyykkö P., Olsen J.: Chem. Phys. Lett. 1997, 265, 60. <https://doi.org/10.1016/S0009-2614(96)01433-9>
12. Bieroń J., Pyykkö P.: Phys. Rev. Lett. 2001, 87, 133003. <https://doi.org/10.1103/PhysRevLett.87.133003>
13. Bieroń J., Pyykkö P., Jonsson P.: Phys. Rev. A 2005, 71, 012502. <https://doi.org/10.1103/PhysRevA.71.012502>
14. Bieroń J., Pyykkö P.: Phys. Rev. A 2005, 71, 032502. <https://doi.org/10.1103/PhysRevA.71.032502>
15. Lovas F. J., Tiemann E.: J. Phys. Chem. Ref. Data 1974, 3, 609. <https://doi.org/10.1063/1.3253146>
16. Cooke S. A., Gerry M. C. L.: Phys. Chem. Chem. Phys. 2004, 6, 4579. <https://doi.org/10.1039/b408415b>
17. Sundholm D., Pyykkö P., Laaksonen L., Sadlej A. J.: Chem. Phys. Lett. 1984, 112, 1. <https://doi.org/10.1016/0009-2614(84)87030-X>
18. Sundholm D., Pyykkö P., Laaksonen L., Sadlej A. J.: Chem. Phys. 1986, 101, 219. <https://doi.org/10.1016/0301-0104(86)85088-1>
19. Černušák I., Diercksen G. H. F., Sadlej A. J.: Chem. Phys. 1986, 108, 45. <https://doi.org/10.1016/0301-0104(86)87005-7>
20. Diercksen G. H. F., Sadlej A. J., Sundholm D., Pyykkö P.: Chem. Phys. Lett. 1988, 143, 163. <https://doi.org/10.1016/0009-2614(88)87031-3>
21. Urban M., Sadlej A. J.: Chem. Phys. Lett. 1990, 173, 157. <https://doi.org/10.1016/0009-2614(90)80070-T>
22. Pyykkö P., Sadlej A. J.: Chem. Phys. Lett. 1994, 227, 221. <https://doi.org/10.1016/0009-2614(94)00780-2>
23. Kellö V., Sadlej A. J.: Mol. Phys. 1996, 89, 127. <https://doi.org/10.1080/002689796174047>
24. Kellö V., Sadlej A. J.: Chem. Phys. Lett. 1998, 292, 403. <https://doi.org/10.1016/S0009-2614(98)00680-0>
25. de Jong W. A., Styszyński J., Visscher L., Nieuwpoort W. C.: J. Chem. Phys. 1998, 108, 5177. <https://doi.org/10.1063/1.476314>
26. Pernpointner M., Schwerdtfeger P.: Chem. Phys. Lett. 1998, 295, 347. <https://doi.org/10.1016/S0009-2614(98)00960-9>
27. Pernpointner M., Seth M., Schwerdtfeger P.: J. Chem. Phys. 1998, 108, 6722. <https://doi.org/10.1063/1.476088>
28. Pernpointner M., Schwerdtfeger P., Hess B. A.: J. Chem. Phys. 1998, 108, 6739. <https://doi.org/10.1063/1.476089>
29. Kellö V., Sadlej A. J.: Phys. Rev. A 1999, 60, 3575. <https://doi.org/10.1103/PhysRevA.60.3575>
30. Kellö V., Sadlej A. J.: Mol. Phys. 1999, 96, 275. <https://doi.org/10.1080/002689799165909>
31. Kellö V., Sadlej A. J., Pyykkö P., Sundholm D., Tokman M.: Chem. Phys. Lett. 1999, 304, 414. <https://doi.org/10.1016/S0009-2614(99)00340-1>
32. Kellö V., Pyykkö P., Sadlej A. J., Schwerdtfeger P., Thyssen J.: Chem. Phys. Lett. 2000, 318, 222. <https://doi.org/10.1016/S0009-2614(00)00031-2>
33. Kellö V., Sadlej A. J., Pyykkö P.: Chem. Phys. Lett. 2000, 329, 112. <https://doi.org/10.1016/S0009-2614(00)00946-5>
34. Pernpointner M., Schwerdtfeger P., Hess B. A.: Int. J. Quantum Chem. 2000, 76, 371. <https://doi.org/10.1002/(SICI)1097-461X(2000)76:3<371::AID-QUA6>3.0.CO;2-X>
35. Kellö V., Pyykkö P., Sadlej A. J.: Chem. Phys. Lett. 2001, 346, 155. <https://doi.org/10.1016/S0009-2614(01)00940-X>
36. Pernpointner M., Schwerdtfeger P.: J. Phys. B, At. Mol. Opt. Phys. 2001, 34, 659. <https://doi.org/10.1088/0953-4075/34/4/314>
37. Martinez-Pinedo G., Schwerdtfeger P., Caurier E., Langanke K., Nazarewicz W., Sohnel T.: Phys. Rev. Lett. 2001, 87, 062701. <https://doi.org/10.1103/PhysRevLett.87.062701>
38. van Stralen J. N. P., Visscher L.: J. Chem. Phys. 2002, 117, 3103. <https://doi.org/10.1063/1.1492799>
39. van Stralen J. N. P., Visscher L.: Mol. Phys. 2003, 101, 2115. <https://doi.org/10.1080/0026897031000109428>
40. Bast R., Schwerdtfeger P.: J. Chem. Phys. 2003, 119, 5988. <https://doi.org/10.1063/1.1597674>
41. Schwerdtfeger P., Bast R., Gerry M. C. L., Jacob C., Jansen M., Kellö V., Mudring A. V., Sadlej A. J., Saue T., Söhnel T., Wagner F. E.: J. Chem. Phys. 2005, 122, 124317. <https://doi.org/10.1063/1.1869975>
42. Demovič L., Kellö V., Sadlej A. J., Cooke S. A.: J. Chem. Phys. 2006, 124, 184308. <https://doi.org/10.1063/1.2192779>
43. Pyykkö P.: Mol. Phys. 2001, 99, 1617. <https://doi.org/10.1080/00268970110069010>
44. Sundholm D., Olsen J.: Chem. Phys. Lett. 1991, 177, 91. <https://doi.org/10.1016/0009-2614(91)90181-8>
45. Sundholm D., Olsen J.: J. Chem. Phys. 1991, 94, 5051. <https://doi.org/10.1063/1.460540>
46. Sundholm D., Olsen J.: J. Phys. Chem. 1992, 96, 627. <https://doi.org/10.1021/j100181a022>
47. Sundholm D., Olsen J.: Phys. Rev. Lett. 1992, 68, 927. <https://doi.org/10.1103/PhysRevLett.68.927>
48. Sundholm D., Olsen J.: J. Chem. Phys. 1993, 98, 7152. <https://doi.org/10.1063/1.464732>
49. Urban M., Černušák I., Noga J., Kellö V. in: Methods in Computational Chemistry (S. Wilson, Ed.), p. 117. Plenum Press, New York 1987.
50. Bartlett R. J. in: Advanced Series in Physical Chemistry, Methods in Computational Chemistry (D. R. Yarkony, Ed.), Vol. 2, p. 1047. World Scientific, Singapore 1995.
51. Raymonda J., Klemperer W.: J. Chem. Phys. 1971, 55, 232. <https://doi.org/10.1063/1.1675513>
52. Huber K. P., Herzberg G.: Molecular Spectra and Molecular Structure IV. Constants of Diatomic Molecules. Van Nostrand Reinhold Co., New York 1979.
53. Neogrády P., Urban M., Hubač I.: J. Chem. Phys. 1992, 97, 5074. <https://doi.org/10.1063/1.463828>
54. Neogrády P., Urban M., Hubač I.: J. Chem. Phys. 1994, 100, 3706. <https://doi.org/10.1063/1.466359>
55. Neogrády P., Urban M.: Int. J. Quantum. Chem. 1995, 55, 187. <https://doi.org/10.1002/qua.560550214>
56. Urban M., Neogrády P., Hubač I. in: Recent Advances in Computational Chemistry (R. J. Bartlett, Ed.), Vol. 3, p. 275. World Scientific, Singapore 1997.
57. Helgaker T., Jørgensen P., Olsen J.: Molecular Electronic-Structure Theory. Wiley, New York 2000.
58. Nerbrant P.-O., Roos B., Sadlej A. J.: Int. J. Quantum Chem. 1977, 15, 135. <https://doi.org/10.1002/qua.560150202>
59. Diercksen G. H. F., Roos B. O., Sadlej A. J.: Chem. Phys. 1981, 59, 29. <https://doi.org/10.1016/0301-0104(81)80082-1>
60. Kellö V., Sadlej A. J.: J. Chem. Phys. 1990, 93, 8122. <https://doi.org/10.1063/1.459342>
61. Sadlej A. J., Urban M.: Chem. Phys. Lett. 1991, 176, 293. <https://doi.org/10.1016/0009-2614(91)90033-6>
62. Kellö V., Sadlej A. J.: Chem. Phys. Lett. 1990, 174, 641. <https://doi.org/10.1016/0009-2614(90)85501-3>
63. Kellö V., Sadlej A. J.: Int. J. Quantum Chem. 1998, 68, 159. <https://doi.org/10.1002/(SICI)1097-461X(1998)68:3<159::AID-QUA3>3.0.CO;2-U>
64. Barysz M. in: Theoretical Chemistry and Physics of Heavy and Superheavy Elements (U. Kaldor and S. Wilson, Eds), p. 349. Kluwer, Dordrecht 2003; and references therein.
65. Barysz M., Sadlej A. J.: J. Mol. Struct. (THEOCHEM) 2001, 573, 181. <https://doi.org/10.1016/S0166-1280(01)00542-5>
66. Barysz M., Sadlej A. J.: J. Chem. Phys. 2002, 116, 2696. <https://doi.org/10.1063/1.1436462>
67. Kędziera D., Barysz M.: J. Chem. Phys. 2004, 121, 6719. <https://doi.org/10.1063/1.1792131>
68. Douglas M., Kroll N. M.: Ann. Phys. 1974, 82, 89. <https://doi.org/10.1016/0003-4916(74)90333-9>
69. Hess B. A.: Phys. Rev. A 1985, 32, 756. <https://doi.org/10.1103/PhysRevA.32.756>
70. Hess B. A.: Phys. Rev. A 1986, 33, 3742. <https://doi.org/10.1103/PhysRevA.33.3742>
71. Hess B. A., Buenker R. J., Chandra P.: Int. J. Quantum Chem. 1986, 29, 737. <https://doi.org/10.1002/qua.560290414>
72. The IOTC method was implemented in the local version of the Molcas 5.4 system of programs by D. Kędziera (Department of Quantum Chemistry, Institute of Chemistry, Nicolaus Copernicus University, Toruń, Poland, 2003) and by D. Kędziera and one of the present authors (V.K.) in Molcas 6.5. The corresponding patches for Molcas 5 and Molcas 6 releases of Molcas can be obtained directly either from D. Kędziera (e-mail: [email protected]) or from V. Kellö (e-mail: [email protected]).
73. Kellö V., Sadlej A. J., Hess B. A.: J. Chem. Phys. 1996, 105, 1995. <https://doi.org/10.1063/1.472067>
74. Barysz M., Sadlej A. J.: Theor. Chem. Acc. 1997, 97, 260. <https://doi.org/10.1007/s002140050260>
75. Barysz M., Sadlej A. J., Snijders J. G.: Int. J. Quantum Chem. 1997, 65, 225. <https://doi.org/10.1002/(SICI)1097-461X(1997)65:3<225::AID-QUA4>3.0.CO;2-Y>
76. Kellö V., Sadlej A. J.: J. Mol. Struct. (THEOCHEM) 2001, 547, 35. <https://doi.org/10.1016/S0166-1280(01)00458-4>
77. Kellö V., Sadlej A. J.: J. Chem. Phys. 2004, 120, 9424. <https://doi.org/10.1063/1.1709973>
78. Kędziera D., Barysz M., Sadlej A. J.: Struct. Chem. 2004, 15, 369. <https://doi.org/10.1023/B:STUC.0000037892.26044.4d>
79. Andersson K., Barysz M., Bernhardsson A., Blomberg M. R. A., Cooper D. L., Fülscher M. P., de Graaf C., Hess B. A., Karlström G., Lindh R., Malmqvist P.-Å., Nakajima T., Neogrády P., Olsen J., Roos B. O., Schimmelpfennig B., Schütz M., Seijo L., Serrano-Andrès L., Siegbahn P. E. M., Stålring J., Thorsteinsson T., Veryazov V., Widmark P.-O.: Molcas, Version 5.4., Lund University, Lund 2002.
80. Andersson K., Barysz M., Bernhardsson A., Blomberg M. R. A., Carissan Y., Cooper D. L., Cossi M., Devararajan A., Fülscher M. P., Gaenko A., Gagliardi L., de Graaf C., Hagberg D., Hess B. A., Karlström G., Krogh J. W., Lindh R., Malmqvist P.-Å., Nakajima T., Neogrády P., Olsen J., Pedersen T. B., Raab J., Roos B. O., Ryde U., Schimmelpfennig B., Schütz M., Seijo L., Serrano-Andrès L., Siegbahn P. E. M., Stålring J., Thorsteinsson T., Veryazov V., Widmark P.-O.: Molcas, Version 6.5. Lund University, Lund 2006.
81. Huzinaga S., Klobukowski M.: J. Mol. Struct. (THEOCHEM) 1988, 167, 1. <https://doi.org/10.1016/0166-1280(88)87042-8>
82. Sadlej A. J.: Collect. Czech. Chem. Commun. 1988, 53, 1995. <https://doi.org/10.1135/cccc19881995>
83. Sadlej A. J.: Theor. Chim. Acta 1991, 79, 123. <https://doi.org/10.1007/BF01127101>
84. Černušák I., Kellö V., Sadlej A. J.: Collect. Czech. Chem. Commun. 2003, 68, 211. <https://doi.org/10.1135/cccc20030211>
85. Kellö V., Sadlej A. J.: Unpublished results.