Collect. Czech. Chem. Commun. 2011, 76, 1239-1253
https://doi.org/10.1135/cccc2011034
Published online 2011-09-26 22:26:54

Studies towards the N-acylative kinetic resolution of NOBIN

Stellios Arseniyadis, Mohan Mahesh, Paul McDaid, Thomas Hampel, Stephen G. Davey and Alan C. Spivey*

Department of Chemistry, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK

References

1. Smrčina M., Lorenc M., Hanuš V., Kočovský P.: Synlett 1991, 231. <https://doi.org/10.1055/s-1991-20688>
2. Smrčina M., Vyskočil Š., Máca B., Polášek M., Claxton T. A., Abbott A. P., Kočovský P.: J. Org. Chem. 1994, 59, 2156. <https://doi.org/10.1021/jo00087a036>
3. Lipshutz B. H., Buzard D. J., Olsson C., Noson K.: Tetrahedron 2004, 60, 4443. <https://doi.org/10.1016/j.tet.2004.02.065>
4. Ding K., Xu Q., Wang Y., Liu J., Yu Z., Du B., Wu Y., Koshima H., Matsuura T.: Chem. Commun. 1997, 693. <https://doi.org/10.1039/a608256d>
5. Vyskočil S., Smrčina M., Lorenc M., Kočovský P., Hanuš V., Polášek M.: Chem. Commun. 1998, 585. <https://doi.org/10.1039/a708213d>
6. Körber K., Tang W., Hu X., Zhang X.: Tetrahedron Lett. 2002, 43, 7163. <https://doi.org/10.1016/S0040-4039(02)01674-X>
7. Smrčina M., Lorenc M., Hanuš V., Sedmera P., Kočovský P.: J. Org. Chem. 1992, 57, 1917. <https://doi.org/10.1021/jo00032a055>
8. Smrčina M., Poláková J., Vyskočil Š., Kočovský P.: J. Org. Chem. 1993, 58, 4534. <https://doi.org/10.1021/jo00069a010>
9. Vyskočil S., Jaracz S., Smrčina M., Sticha M., Hanuš V., Polášek M., Kočovský P.: J. Org. Chem. 1998, 63, 7727. <https://doi.org/10.1021/jo9807565>
10. Hon S.-W., Li C.-H., Kuo J.-H., Barhate N. B., Liu Y.-H., Wang Y., Chen C.-T.: Org. Lett. 2001, 3, 869. <https://doi.org/10.1021/ol015505o>
11. Yusa Y., Kaito I., Akiyama K., Mikami K.: Chirality 2010, 22, 224.
12. Smrčina M., Vyskočil Š., Polívková J., Poláková J., Kočovský P.: Collect. Czech. Chem. Commun. 1996, 61, 1520. <https://doi.org/10.1135/cccc19961520>
13. Singer R. A., Brock J. R., Carreira E. M.: Helv. Chim. Acta 2003, 86, 1040. <https://doi.org/10.1002/hlca.200390092>
14. Mahmoud H., Han Y., Segal B. M., Cai L.: Tetrahedron: Asymmetry 1998, 9, 2035. <https://doi.org/10.1016/S0957-4166(98)00203-1>
15. Ding K., Wang Y., Yun H., Liu J., Wu Y., Terada M., Okubo Y., Mikami K.: Chem. Eur. J. 1999, 5, 1734. <https://doi.org/10.1002/(SICI)1521-3765(19990604)5:6<1734::AID-CHEM1734>3.0.CO;2-G>
16. Singer R. A., Buchwald S. L.: Tetrahedron Lett. 1999, 40, 1095. <https://doi.org/10.1016/S0040-4039(98)02642-2>
17. Salinger D., Bruckner R.: Synlett 2009, 109.
18. Hattori T., Hotta H., Suzuki T., Miyano S.: Bull. Chem. Soc. Jpn. 1993, 66, 613. <https://doi.org/10.1246/bcsj.66.613>
19. Brunner H., Henning F., Weber M.: Tetrahedron: Asymmetry 2002, 13, 37. <https://doi.org/10.1016/S0957-4166(02)00029-0>
20. Meyers A. I., Lutomski K. A.: Synthesis 1983, 105. <https://doi.org/10.1055/s-1983-30235>
21. Ito Y., Miyake T., Hatano S., Shima R., Ohara T., Suginome M.: J. Am. Chem. Soc. 1998, 120, 11880. <https://doi.org/10.1021/ja982500m>
22. Van Veldhuizen J. J., Garber S. B., Kingsbury J. S., Hoveyda A. H.: J. Am. Chem. Soc. 2002, 124, 4954. <https://doi.org/10.1021/ja020259c>
23. Brunner H., Weber M., Zabel M.: Z. Naturforsh. B: Chem. Sci. 2003, 58, 821.
24. Kočovský P., Vyskočil Š., Smrčina M.: Chem. Rev. 2003, 103, 3213. <https://doi.org/10.1021/cr9900230>
25. Ding K. L., Guo H. C., Li X., Yuan Y., Wang Y.: Top. Catal. 2005, 35, 105. <https://doi.org/10.1007/s11244-005-3816-2>
26. Ding K. L., Li X., Ji B. M., Guo H. C., Kitamura M.: Curr. Org. Synth. 2005, 2, 499. <https://doi.org/10.2174/157017905774322631>
27. Brunel J. M.: Chem. Rev. 2007, 107, PR1-PR45.
28. Spivey A. C., Arseniyadis S.: Top. Curr. Chem. 2010, 291, 233. <https://doi.org/10.1007/978-3-642-02815-1_25>
29. Aoyagi N., Izumi T.: Tetrahedron Lett. 2002, 43, 5529. <https://doi.org/10.1016/S0040-4039(02)01162-0>
30. van Rantwijk F., Sheldon R. A.: Tetrahedron 2004, 60, 501. <https://doi.org/10.1016/j.tet.2003.10.018>
31. Wurz R. P.: Chem. Rev. 2007, 107, 5570. <https://doi.org/10.1021/cr068370e>
32. Arai S., Bellemin-Laponnaz S., Fu G. C.: Angew. Chem. Int. Ed. 2001, 40, 234. <https://doi.org/10.1002/1521-3773(20010105)40:1<234::AID-ANIE234>3.0.CO;2-K>
33. Birman V. B., Jiang H., Li X., Guo L., Uffman E. W.: J. Am. Chem. Soc. 2006, 126, 6536. <https://doi.org/10.1021/ja061560m>
34. Arp F. O., Fu G. C.: J. Am. Chem. Soc. 2006, 128, 14264. <https://doi.org/10.1021/ja0657859>
35. Anstiss M., Nelson A.: Org. Biomol. Chem. 2006, 4, 4135. <https://doi.org/10.1039/b608910k>
36. De C. K., Klauber E. G., Seidel D.: J. Am. Chem. Soc. 2009, 131, 17060. <https://doi.org/10.1021/ja9079435>
37. Fowler B. S., Mikochik P. J., Miller S. J.: J. Am. Chem. Soc. 2010, 132, 2870. <https://doi.org/10.1021/ja9107897>
38. Klauber E. G., De C. K., Shah T. K., Seidel D.: J. Am. Chem. Soc. 2010, 132, 13624. <https://doi.org/10.1021/ja105337h>
39. Spivey A. C., Zhu F., Mitchell M. B., Davey S. G., Jarvest R. L.: J. Org. Chem. 2003, 68, 7379. <https://doi.org/10.1021/jo034603f>
40. Yin J., Buchwald S. L.: J. Am. Chem. Soc. 2000, 122, 12051. <https://doi.org/10.1021/ja005622z>
41. For example, enantiomerically pure biaryls 8 and 9 (obtained by separation using chiral stationary phase HPLC, see Experimental) were found to lose <5% ee on standing for 1 week at 25 °C and to be essentially configurationally stable over this time period in a –20 °C freezer.
42. Previous studies on catalyst 11 had established that there is no background reaction between 1-(1-naphthyl)ethanol and isobutyric anhydride under these conditions (see ref.39).
43. Spivey A. C., Fekner T., Adams H.: Tetrahedron Lett. 1998, 39, 8919. <https://doi.org/10.1016/S0040-4039(98)01951-0>
44. Spivey A. C., Fekner T. S., Spey S. E., Adams H.: J. Org. Chem. 1999, 64, 9430. <https://doi.org/10.1021/jo991011h>
45. Spivey A. C., Fekner T. S., Spey S. E.: J. Org. Chem. 2000, 65, 3154. <https://doi.org/10.1021/jo0000574>
46. Heinrich M. R., Klisa H. S., Mayr H., Steglich W., Zipse H.: Angew. Chem. Int. Ed. 2003, 42, 4826. <https://doi.org/10.1002/anie.200352289>
47. Rycke N. D., Berionni G., Couty F. O., Mayr H., Goumont R., David O. R. P.: Org. Lett. 2010, 13, 530. <https://doi.org/10.1021/ol1029589>
48. Kagan H. B., Fiaud J. C.: Top. Stereochem. 1988, 18, 249. <https://doi.org/10.1002/9780470147276.ch4>
49. Hattori T., Takeda A., Yamabe O., Miyano S.: Tetrahedron 2002, 58, 233. <https://doi.org/10.1016/S0040-4020(01)01143-7>
50. http://www.hse.gov.uk/coshh/index.htm.
51. Still W. C., Kahn M., Mitra A.: J. Org. Chem. 1978, 43, 2923. <https://doi.org/10.1021/jo00408a041>
52. Stubbs H. W. D., Tucker S. H.: J. Chem. Soc. 1954, 227. <https://doi.org/10.1039/jr9540000227>
53. Genov M., Almorín A., Espinet P.: Chem. Eur. J. 2006, 12, 9346. <https://doi.org/10.1002/chem.200600616>
54. Wolfe J. P., Singer R. A., Yang B. H., Buchwald S. L.: J. Am. Chem. Soc. 1999, 121, 9550. <https://doi.org/10.1021/ja992130h>
55. Tanaka K.-I., Yoshifuji S., Nitta Y.: Chem. Pharm. Bull. 1987, 35, 364.
56. Troja E.: Org. Prep. Proc. Int. 1988, 253.
57. Hattori T., Takeda A., Yamabe O., Miyano S.: Tetrahedron 2002, 58, 233. <https://doi.org/10.1016/S0040-4020(01)01143-7>