Collect. Czech. Chem. Commun. 2011, 76, 859-917
https://doi.org/10.1135/cccc2011078
Published online 2011-06-29 13:25:52

Photoredox catalysis by [Ru(bpy)3]2+ to trigger transformations of organic molecules. Organic synthesis using visible-light photocatalysis and its 20th century roots

Filip Teplý

Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám. 2, 166 10 Prague 6, Czech Republic

References

1a. For a visionary address on the future of photochemistry, see: Ciamician G.: Science 1912, 36, 385; <https://doi.org/10.1126/science.36.926.385>
1b. For excellent discussion on the beginnings of organic photochemistry, see: Roth H. D.: Angew. Chem., Int. Ed. Engl. 1989, 28, 1193. <https://doi.org/10.1002/anie.198911931>
2a. Klán P., Wirz J.: Photochemistry of Organic Compounds: From Concepts to Practice. Wiley, Chichester 2009.
2b. Turro N. J., Ramamurthy V., Scaiano J. C.: Modern Molecular Photochemistry of Organic Molecules. University Science Books, Sausalitoelfassembled 2010.
3a. Fagnoni M., Dondi D., Ravelli D., Albini, A.: Chem. Rev. 2007, 107, 2725. <https://doi.org/10.1021/cr068352x>
3b. Hoffmann N.: Chem. Rev. 2008, 108, 1052. <https://doi.org/10.1021/cr0680336>
3c. Svoboda J., König B.: Chem. Rev. 2006, 106, 5413. <https://doi.org/10.1021/cr050568w>
3d. Bach T.: Synthesis 1998, 683; <https://doi.org/10.1055/s-1998-2054>
3e. For photochemical synthesis of fine chemicals with sunlight, see: Esser P., Pohlmann B., Scharf H.-D.: Angew. Chem., Int. Ed. Engl. 1994, 33, 2009. <https://doi.org/10.1002/anie.199420091>
4a. Narayanam J. M. R., Stephenson C. R. J.: Chem. Soc. Rev. 2011, 40, 102. <https://doi.org/10.1039/b913880n>
4b. Yoon T. P., Ischay M. A., Du J.: Nat. Chem. 2010, 2, 527. <https://doi.org/10.1038/nchem.687>
4c. Zeitler K.: Angew. Chem. Int. Ed. 2009, 48, 9785. <https://doi.org/10.1002/anie.200904056>
4d. Renaud P., Leong P.: Science 2008, 322, 55. <https://doi.org/10.1126/science.1164403>
5. Nicewicz D. A., MacMillan D. W. C.: Science 2008, 322, 77. <https://doi.org/10.1126/science.1161976>
6. Ischay M. A., Anzovino M. E., Du J., Yoon T. P.: J. Am. Chem. Soc. 2008, 130, 12886. <https://doi.org/10.1021/ja805387f>
7. Narayanam J. M. R., Tucker J. W., Stephenson C. R. J.: J. Am. Chem. Soc. 2009, 131, 8756. <https://doi.org/10.1021/ja9033582>
8. Neumann M., Füldner S., König B., Zeitler K.: Angew. Chem. Int. Ed. 2011, 50, 951. <https://doi.org/10.1002/anie.201002992>
9. Burstall F. H.: J. Chem. Soc. 1936, 173. <https://doi.org/10.1039/jr9360000173>
10a. Interestingly high configurational stability of [Ru(bpy)3]2+ was in stark contrast to analogous iron and nickel complexes studied previously by Blau and Werner: Blau F.: Monatsh. Chem. 1898, 19, 647. <https://doi.org/10.1007/BF01517438>
10b. Werner A.: Chem. Ber. 1912, 45, 433;
10c. For configurationally stable octahedral iron complexes, see: Monchaud D., Jodry J. J., Pomeranc D., Heitz V., Chambron J. C., Sauvage J. P., Lacour J.: Angew. Chem. Int. Ed. 2002, 41, 2317. <https://doi.org/10.1002/1521-3773(20020703)41:13<2317::AID-ANIE2317>3.0.CO;2-W>
11a. Sabbatini N., Balzani V.: J. Am. Chem. Soc. 1972, 94, 7587. <https://doi.org/10.1021/ja00776a057>
11b. Gafney H. D., Adamson A. W.: J. Am. Chem. Soc. 1972, 94, 8238. <https://doi.org/10.1021/ja00778a054>
11c. Wrighton M., Markham J.: J. Phys. Chem. 1973, 77, 3042. <https://doi.org/10.1021/j100644a002>
11d. Bock C. R., Meyer T. J., Whitten D. G.: J. Am. Chem. Soc. 1974, 96, 4710. <https://doi.org/10.1021/ja00821a078>
11e. Navon G., Sutin N.: Inorg. Chem. 1974, 13, 2159. <https://doi.org/10.1021/ic50139a021>
12a. Campagna S., Puntoriero F., Nastasi F., Bergamini G., Balzani V.: Top. Curr. Chem. 2007, 280, 117. <https://doi.org/10.1007/128_2007_133>
12b. Juris A., Balzani V., Barigelletti F., Campagna S., Belser P., von Zelewsky A.: Coord. Chem. Rev. 1988, 84, 85. <https://doi.org/10.1016/0010-8545(88)80032-8>
12c. Kalyanasundaram K.: Coord. Chem. Rev. 1982, 46, 159. <https://doi.org/10.1016/0010-8545(82)85003-0>
12d. Sutin N.: J. Photochem. 1979, 10, 19. <https://doi.org/10.1016/0047-2670(79)80035-0>
12e. Whitten D. G.: Acc. Chem. Res. 1980, 13, 83. <https://doi.org/10.1021/ar50147a004>
13a. Kalyanasundaram K., Kiwi J., Gratzel M.: Helv. Chim. Acta 1978, 61, 2720. <https://doi.org/10.1002/hlca.19780610740>
13b. Gratzel M., Kiwi J.: J. Am. Chem. Soc. 1979, 101, 7214.
14a. Creutz C., Sutin N.: Proc. Natl. Acad. Sci. U.S.A. 1975, 72, 2858; <https://doi.org/10.1073/pnas.72.8.2858>
14b. For recent reviews on utilization of solar energy, see: Lewis N. S., Nocera D. G.: Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 15729. <https://doi.org/10.1073/pnas.0603395103>
14c. Balzani V., Credi A., Venturi M.: ChemSusChem 2008, 1, 26; <https://doi.org/10.1002/cssc.200700087>
14d. For excellent overviews on various relevant environmental issues, see: Armaroli N., Balzani V.: Chem. Asian J. 2011, 6, 768. <https://doi.org/10.1002/asia.201000797>
14e. Jenck J. F., Agterberg F., Droescher M. J.: Green Chem. 2004, 6, 544. <https://doi.org/10.1039/b406854h>
15. Ceroni P., Bergamini G., Balzani V.: Angew. Chem. Int. Ed. 2009, 48, 8516. <https://doi.org/10.1002/anie.200904764>
16. Hedstrand D. M., Kruizinga W. H., Kellogg R. M.: Tetrahedron Lett. 1978, 19, 1255. <https://doi.org/10.1016/S0040-4039(01)94515-0>
17. van Bergen T. J., Hedstrand D. M., Kruizinga W. H., Kellogg R. M.: J. Org. Chem. 1979, 44, 4953. <https://doi.org/10.1021/jo00394a044>
18. Mashraqui S. H., Kellogg R. M.: Tetrahedron Lett. 1985, 26, 1453. <https://doi.org/10.1016/S0040-4039(00)99069-5>
19. Pac C., Ihama M., Yasuda M., Miyauchi Y., Sakurai H.: J. Am. Chem. Soc. 1981, 103, 6495. <https://doi.org/10.1021/ja00411a040>
20. Pac C., Miyauchi Y., Ishitani O., Ihama M., Yasuda M., Sakurai H.: J. Org. Chem. 1984, 49, 26. <https://doi.org/10.1021/jo00175a006>
21. Ishitani O., Pac C., Sakurai H.: J. Org. Chem. 1983, 48, 2941. <https://doi.org/10.1021/jo00165a037>
22. Ishitani O., Yanagida S., Takamuku S., Pac C.: J. Org. Chem. 1987, 52, 2790. <https://doi.org/10.1021/jo00389a027>
23. Maidan R., Goren Z., Becker J. Y., Willner I.: J. Am. Chem. Soc. 1984, 106, 6217. <https://doi.org/10.1021/ja00333a017>
24. Goren Z., Willner I.: J. Am. Chem. Soc. 1983, 105, 7764. <https://doi.org/10.1021/ja00364a060>
25. Willner I., Goren Z., Mandler D., Maidan R., Degani Y.: J. Photochem. 1985, 28, 215. <https://doi.org/10.1016/0047-2670(85)87033-7>
26. Maidan R., Willner I.: J. Am. Chem. Soc. 1986, 107, 1080. <https://doi.org/10.1021/ja00265a038>
27. For a related example, see: Mandler D., Willner I.: J. Am. Chem. Soc. 1984, 106, 5352. <https://doi.org/10.1021/ja00330a053>
28. Willner I., Tsfania T., Eichen Y.: J. Org. Chem. 1990, 55, 2656. <https://doi.org/10.1021/jo00296a023>
29. Tomioka H., Ueda K., Ohi H., Izawa Y.: Chem. Lett. 1986, 1359. <https://doi.org/10.1246/cl.1986.1359>
30. Cano-Yelo H., Deronzier A.: J. Chem. Soc., Perkin Trans. 2 1984, 1093. <https://doi.org/10.1039/p29840001093>
31. Oxidative quenching of [Ru(bpy)3]2+* with p-RC6H4N2+ has been also studied in the context of two-compartment photoelectrochemical cells, see: Cano-Yelo H., Deronzier A.: J. Chem. Soc., Faraday Trans. 1 1984, 80, 3011. <https://doi.org/10.1039/f19848003011>
32. Cano-Yelo H., Deronzier A.: Tetrahedron Lett. 1984, 25, 5517. <https://doi.org/10.1016/S0040-4039(01)81614-2>
33. Cano-Yelo H., Deronzier A.: New J. Chem. 1987, 11, 479.
34. Hironaka K., Fukuzumi S., Tanaka T.: J. Chem. Soc., Perkin Trans. 2 1984, 1705. <https://doi.org/10.1039/p29840001705>
35a. Rakshys J. W., Jr.: Tetrahedron Lett. 1971, 4745. <https://doi.org/10.1016/S0040-4039(01)87543-2>
35b. Bank S., Bank J. F.: Tetrahedron Lett. 1969, 4533. <https://doi.org/10.1016/S0040-4039(01)88743-8>
35c. Kern J. M., Sauvage J. P.: J. Chem. Soc., Chem. Commun. 1987, 546. <https://doi.org/10.1039/c39870000546>
36. Fukuzumi S., Mochizuki S., Tanaka T.: J. Phys. Chem. 1990, 94, 722. <https://doi.org/10.1021/j100365a039>
37a. For the initial study on acid catalysis in photoinduced electron transfer from [Ru(bpy)3]2+ to substituted acetophenones, see: Fukuzumi S., Ishikawa K., Hironaka K., Tanaka T.: J. Chem. Soc., Perkin Trans. 2 1987, 751; <https://doi.org/10.1039/p29870000751>
37b. For a related study with ferrocene reductants in their ground state, see: Fukuzumi S., Mochizuki S., Tanaka T.: J. Am. Chem. Soc. 1989, 111, 1497. <https://doi.org/10.1021/ja00186a056>
38. Okada K., Okamoto K., Morita N., Okubo K., Oda M.: J. Am. Chem. Soc. 1991, 113, 9401. <https://doi.org/10.1021/ja00024a074>
39. Okada K., Okubo K., Morita N., Oda M.: Tetrahedron Lett. 1992, 33, 7377. <https://doi.org/10.1016/S0040-4039(00)60192-2>
40. Okada K., Okubo K., Morita N., Oda M.: Chem. Lett. 1993, 2021. <https://doi.org/10.1246/cl.1993.2021>
41. Barton D. H. R., Csiba M. A., Jaszberenyi J. C.: Tetrahedron Lett. 1994, 35, 2869. <https://doi.org/10.1016/S0040-4039(00)76646-9>
42. Hamada T., Ishida H., Usui S., Watanabe Y., Tsumura K., Ohkubo K.: J. Chem. Soc., Chem. Commun. 1993, 909. <https://doi.org/10.1039/c39930000909>
43. Hamada T., Ishida H., Usui S., Tsumura K., Ohkubo K.: J. Mol. Catal. 1994, 88, L1.
44. Ohkubo K., Hamada T., Ishida H.: J. Chem. Soc., Chem. Commun. 1993, 1423. <https://doi.org/10.1039/c39930001423>
45. Ohkubo K., Watanabe M., Ohta H., Usui S.: J. Photochem. Photobiol., A 1996, 95, 231. <https://doi.org/10.1016/1010-6030(95)04263-6>
46a. Rau H.: Chem. Rev. 1983, 83, 535. <https://doi.org/10.1021/cr00057a003>
46b. Inoue Y.: Chem. Rev. 1992, 92, 741. <https://doi.org/10.1021/cr00013a001>
47. Irie R., Masutani K., Katsuki T.: Synlett 2000, 1433.
48a. For recent advances in asymmetric oxidative coupling of 2-naphthol and its derivatives, see: Wang H.: Chirality 2010, 22, 827; <https://doi.org/10.1002/chir.20843>
48b. For further review, see: Giri R., Shi B. F., Engle K. M., Maugel N., Yu J. Q.: Chem. Soc. Rev. 2009, 38, 3242. <https://doi.org/10.1039/b816707a>
49a. Shimizu H., Onitsuka S., Egami H., Katsuki T.: J. Am. Chem. Soc. 2005, 127, 5396. <https://doi.org/10.1021/ja047608i>
49b. Tanaka H., Nishikawa H., Uchida T., Katsuki T.: J. Am. Chem. Soc. 2010, 132, 12034. <https://doi.org/10.1021/ja104184r>
50. Zen J. M., Liou S. L., Kumar A. S., Hsia M. S.: Angew. Chem. Int. Ed. 2003, 42, 577. <https://doi.org/10.1002/anie.200390166>
51. Hirao T., Shiori J., Okahata N.: Bull. Chem. Soc. Jpn. 2004, 77, 1763. <https://doi.org/10.1246/bcsj.77.1763>
52. Hasegawa E., Takizawa S., Seida T., Yamaguchi A., Yamaguchi N., Chiba N., Takahashi T., Ikeda H., Akiyama K.: Tetrahedron 2006, 62, 6581. <https://doi.org/10.1016/j.tet.2006.03.061>
53. Herance J. R., Ferrer B., Bourdelande J. L., Marquet J., García H.: Chem. Eur. J. 2006, 12, 3890. <https://doi.org/10.1002/chem.200501365>
54. Osawa M., Nagai H., Akita M.: Dalton Trans. 2007, 827. <https://doi.org/10.1039/b618007h>
55. Nagib D. A., Scott M. E., MacMillan D. W. C.: J. Am. Chem. Soc. 2009, 131, 10875. <https://doi.org/10.1021/ja9053338>
56. Shih H.-W., Vander Wal M. N., Grange R. L., MacMillan D. W. C.: J. Am. Chem. Soc. 2010, 132, 13600. <https://doi.org/10.1021/ja106593m>
57. Du J., Yoon T. P.: J. Am. Chem. Soc. 2009, 131, 14604. <https://doi.org/10.1021/ja903732v>
58. Ischay M. A., Lu X., Yoon T. P.: J. Am. Chem. Soc. 2010, 132, 8572. <https://doi.org/10.1021/ja103934y>
59. Lu Z., Shen M., Yoon T. P.: J. Am. Chem. Soc. 2011, 133, 1162. <https://doi.org/10.1021/ja107849y>
60. Tucker J. W., Narayanam J. M. R., Krabbe S. W., Stephenson C. R. J.: Org. Lett. 2010, 12, 368. <https://doi.org/10.1021/ol902703k>
61. Furst L., Matsuura B. S., Narayanam J. M. R., Tucker J. W., Stephenson C. R. J.: Org. Lett. 2010, 12, 3104. <https://doi.org/10.1021/ol101146f>
62. Tucker J. W., Nguyen J. D., Narayanam J. M. R., Krabbe S. W., Stephenson C. R. J.: Chem. Commun. 2010, 46, 4985. <https://doi.org/10.1039/c0cc00981d>
63. Condie A. G., González-Gómez J. C., Stephenson C. R. J.: J. Am. Chem. Soc. 2010, 132, 1464. <https://doi.org/10.1021/ja909145y>
64. Dai C., Narayanam J. M. R., Stephenson C. R. J.: Nature Chem. 2011, 3, 140. <https://doi.org/10.1038/nchem.949>
65a. Nguyen J. D., Tucker J. W., Konieczynska M. D., Stephenson C. R. J.: J. Am. Chem. Soc. 2011, 133, 4160. <https://doi.org/10.1021/ja108560e>
65b. Tucker J. W., Narayanam J. M. R., Shah P. S., Stephenson C. R. J.: Chem. Commun. 2011, 47. <https://doi.org/10.1039/c1cc10827a>
65c. For a related photochemical removal of PMB protecting group using flavin photocatalysis, see: Lechner R., König B.: Synthesis 2010, 1712.
66. Koike T., Akita M.: Chem. Lett. 2009, 38, 166. <https://doi.org/10.1246/cl.2009.166>
67. Andrews R. S., Becker J. J., Gagné M. R.: Angew. Chem. Int. Ed. 2010, 49, 7274. <https://doi.org/10.1002/anie.201004311>
68. Rueping M., Vila C., Koenigs R. M., Poscharny K., Fabry D. C.: Chem. Commun. 2011, 47, 2360. <https://doi.org/10.1039/c0cc04539j>
69a. Beeson T. D., Mastracchio A., Hong J. B., Ashton K., MacMillan D. W. C.: Science 2007, 316, 582. <https://doi.org/10.1126/science. 1142696>
69b. Jang H. Y., Hong J. B., MacMillan D. W. C.: J. Am. Chem. Soc. 2007, 129, 7004. <https://doi.org/10.1021/ja0719428>
69c. Kim H., MacMillan D. W. C.: J. Am. Chem. Soc. 2008, 130, 398. <https://doi.org/10.1021/ja077212h>
69d. Wilson J. E., Casarez A. D., MacMillan D. W. C.: J. Am. Chem. Soc. 2009, 131, 11332. <https://doi.org/10.1021/ja904504j>
69e. Devery III J. J., Conrad J. C., MacMillan D. W. C., Flowers II R. A.: Angew. Chem. Int. Ed. 2010, 49, 6106. <https://doi.org/10.1002/anie.201001673>
69f. Mastracchio A., Warkentin A. A., Walji A. M., MacMillan D. W. C.: Proc. Natl. Acad. Sci. U.S.A. 2010, 107, 20648. <https://doi.org/10.1073/pnas.1002845107>
70a. Lee S. H., Nam D. H., Park C. B.: Adv. Synth. Catal. 2009, 351, 2589. <https://doi.org/10.1002/adsc.200900547>
70b. Lazarides T., McCormick T., Du P., Luo G., Lindley B., Eisenberg R.: J. Am. Chem. Soc. 2009, 131, 9192. <https://doi.org/10.1021/ja903044n>
70c. Labat F., Ciofini I., Hratchian H. P., Frisch M., Raghavachari K., Adamo C.: J. Am. Chem. Soc. 2009, 131, 14290. <https://doi.org/10.1021/ja902833s>
70d. Jhonsi M. A., Kathiravan A., Renganathan R.: J. Mol. Struct. 2009, 921, 279. <https://doi.org/10.1016/j.molstruc.2009.01.006>
71a. Baik T.-G., Luiz A. L., Wang L.-C., Krische M. J.: J. Am. Chem. Soc. 2001, 123, 6716. <https://doi.org/10.1021/ja010800p>
71b. Wang L.-C., Jang H.-Y., Roh Y., Lynch V., Schultz A. J., Wang X., Krische M. J.: J. Am. Chem. Soc. 2002, 124, 9448. <https://doi.org/10.1021/ja020223k>
71c. Yang J., Cauble D. F., Berro A. J., Bauld N. L., Krische M. J.: J. Org. Chem. 2004, 69, 7979. <https://doi.org/10.1021/jo048499t>
71d. Roh Y., Jang H.-Y., Lynch V., Bauld N. L., Krische M. J.: Org. Lett. 2002, 4, 611. <https://doi.org/10.1021/ol0172065>
71e. Yang J., Felton G. A. N., Bauld N. L., Krische M. J.: J. Am. Chem. Soc. 2004, 126, 1634. <https://doi.org/10.1021/ja030543j>
72a. For references on radical cation cyclizations, see: Bell F. A., Crellin R. A., Fugii N., Ledwith A.: J. Chem. Soc., Chem. Commun. 1969, 251.
72b. Carruthers R. A., Crellin R. A., Ledwith A.: J. Chem. Soc., Chem. Commun. 1969, 252;
72c. For reviews, see: Ledwith A.: Acc. Chem. Res. 1972, 5, 133. <https://doi.org/10.1021/ar50052a003>
72d. Bauld N. L., Bellville D. J., Harirchian B., Lorenz K. T., Pabon R. A., Jr., Reynolds D. W., Wirth D. D., Chiou H. S., Marsh B. J.: Acc. Chem. Res. 1987, 20, 371. <https://doi.org/10.1021/ar00142a003>
72e. Bauld N. L.: Tetrahedron 1989, 45, 5307. <https://doi.org/10.1016/S0040-4020(01)89486-2>
73a. Giese B., Dupuis J.: Angew. Chem., Int. Ed. Engl. 1983, 22, 622. <https://doi.org/10.1002/anie.198306221>
73b. Giese B.: Angew. Chem., Int. Ed. Engl. 1989, 28, 969. <https://doi.org/10.1002/anie.198909693>
74. Appel R.: Angew. Chem., Int. Ed. Engl. 1975, 14, 801. <https://doi.org/10.1002/anie.197508011>
75a. Fancy D. A., Kodadek T.: Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 6020. <https://doi.org/10.1073/pnas.96.11.6020>
75b. Fancy D. A., Denison C., Kim K., Xie Y., Holdeman T., Amini F., Kodadek T.: Chem. Biol. 2000, 7, 697. <https://doi.org/10.1016/S1074-5521(00)00020-X>
76. Amini F., Denison C., Lin H.-J., Kuo L., Kodadek T.: Chem. Biol. 2003, 10, 1115. <https://doi.org/10.1016/j.chembiol.2003.11.001>
77. Lee J., Yu P., Xiao X., Kodadek T.: Mol. BioSyst. 2008, 4, 59. <https://doi.org/10.1039/b712307h>
78. Lee J., Udugamasooriya D. G., Lim H. S., Kodadek T.: Nat. Chem. Biol. 2010, 6, 258. <https://doi.org/10.1038/nchembio.333>
79a. Barton J. K., Olmon E. D., Sontz P. A.: Coord. Chem. Rev. 2011, 255, 619. <https://doi.org/10.1016/j.ccr.2010.09.002>
79b. Herman L., Ghosh S., Defrancq E., Kirsch-De Mesmaeker A.: J. Phys. Org. Chem. 2008, 21.
79c. Szaciłowski K., Macyk W., Drzewiecka-Matuszek A., Brindell M., Stochel G.: Chem. Rev. 2005, 105, 2647. <https://doi.org/10.1021/cr030707e>
80. Elvin C. M., Carr A. G., Huson M. G., Maxwell J. M., Pearson R. D., Vuocolo T., Liyou N. E., Wong D. C. C., Merritt D. J., Dixon N. E.: Nature 2005, 437, 999. <https://doi.org/10.1038/nature04085>
81. Elvin C. M., Brownlee A. G., Huson M. G., Tebb T. A., Kim M., Lyons R. E., Vuocolo T., Liyou N. E., Hughes T. C., Ramshaw J. A. M., Werkmeister J. A.: Biomaterials 2009, 30, 2059. <https://doi.org/10.1016/j.biomaterials.2008.12.059>
82. Syedain Z. H., Bjork J., Sando L., Tranquillo R. T.: Biomaterials 2009, 30, 6695. <https://doi.org/10.1016/j.biomaterials.2009.08.039>
83. Yu Y., Cui S.: Langmuir 2009, 25, 11272. <https://doi.org/10.1021/la9026464>
84. Yu Y., Zhang H., Zhang C., Cui S.: Chem. Commun. 2011, 47, 929. <https://doi.org/10.1039/c0cc03713c>
85. You X., Zou G., Ye Q., Zhang Q., He P.: J. Mater. Chem. 2008, 18, 4704. <https://doi.org/10.1039/b806458j>
86. Lalevée J., Blanchard N., Tehfe M.-A., Morlet-Savary F., Fouassier J. P.: Macromolecules 2010, 43, 10191. <https://doi.org/10.1021/ma1023318>
87. DeClue M. S., Monnard P. A., Bailey J. A., Maurer S. E., Collis G. E., Ziock H. J., Rasmussen S., Boncella J. M.: J. Am. Chem. Soc. 2009, 131, 931. <https://doi.org/10.1021/ja808200n>
88. Borak J. B., Falvey D. E.: J. Org. Chem. 2009, 74, 3894. <https://doi.org/10.1021/jo900182x>
89. Borak J. B., Lee H. Y., Raghavan S. R., Falvey D. E.: Chem. Commun. 2010, 46, 8983. <https://doi.org/10.1039/c0cc02203a>
90a. Pelliccioli A. P., Wirz J.: Photochem. Photobiol. Sci. 2002, 1, 441. <https://doi.org/10.1039/b200777k>
90b. Bochet C. G.: J. Chem. Soc., Perkin Trans. 1 2002, 125;
90c. For related overviews on photochemistry towards manipulating molecules in complex biological systems, see: Deiters A.: ChemBioChem 2010, 11, 47. <https://doi.org/10.1002/cbic.200900529>
90d. Lee H. M., Larson D. R., Lawrence D. S.: ACS Chem. Biol. 2009, 4, 409. <https://doi.org/10.1021/cb900036s>
91. Flamigni L., Barbieri A., Sabatini C., Ventura B., Barigelletti F.: Top. Curr. Chem. 2007, 281, 143. <https://doi.org/10.1007/128_2007_131>
92. For photocatalytic reduction of acetylpyridine to pinacol using fac-[Re(bpy)(CO)3- (4-(MeCO)py)]SbF6 catalyst, see: Hori H., Koike K., Takeuchi K., Ishitani O.: Chem. Lett. 2000, 376. <https://doi.org/10.1246/cl.2000.376>
93. For photochemical dehydrogenation of Biginelli compounds by rhenium(I) complexes with visible light and CCl4, see: Liu Q., Li Y. N., Zhang H. H., Chen B., Tung C. H., Wu L. Z.: J. Org. Chem. 2011, 76, 1444. <https://doi.org/10.1021/jo102062u>
94. For overview on bimetallic catalysis promoted with visible light, see: Inagaki A., Akita M.: Coord. Chem. Rev. 2010, 254, 1220. <https://doi.org/10.1016/j.ccr.2009.11.003>
95. Photosensitization with organic dyes is a rich field. For representative examples, see: refs2,3,16–18,65c and Barton D. H. R., Haynes R. K., Leclerc G., Magnus P. D., Menzies I. D.: J. Chem. Soc., Perkin Trans. 1 1975, 2055. <https://doi.org/10.1039/p19750002055>
96. For recyclable cross-linked polymers for efficient photocatalysis, see: Xie Z., Wang C., deKrafft K. E., Lin W.: J. Am. Chem. Soc. 2011, 133, 2056. <https://doi.org/10.1021/ja109166b>